login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013538 Numerator of [x^(2*n + 1)] in the Taylor series expansion of arcsin(cosec(x) - cotanh(x)). 2

%I

%S -1,53,73,45137,11226497,129163393,474807665,198247921612319,

%T 618559606844489,395129918156594369761,2883495145728730085501149,

%U 704455206007099333581073,4366595916673463219275798447,10742815369857597784418536545975463

%N Numerator of [x^(2*n + 1)] in the Taylor series expansion of arcsin(cosec(x) - cotanh(x)).

%H G. C. Greubel, <a href="/A013538/b013538.txt">Table of n, a(n) for n = 0..200</a>

%H N. J. A. Sloane, <a href="/A013538/a013538.txt">The file Demichel1.txt</a>. This shows all the sequences in this family as they were originally sent to me in May 1996. Most are correct, but several have small errors and about 64 of them are simply wrong. They are in the process of being corrected.

%H N. J. A. Sloane, <a href="/A013538/a013538_1.txt">List of Demichel sequences that need correcting, as of Dec 17 2011</a> [Thanks to D. S. McNeil for computing this list]

%e -1/6*x + 53/1296*x^3 + 73/145152*x^5 + 45137/156764160*x^7 + 11226497/893931945984*x^9 + ...

%p t1:=arcsin(csc(x)-coth(x));

%p t2:=series(t1,x,30);

%p t3:=seriestolist(t2);

%p t3:=[seq(t3[2*i],i=1..(nops(t3)-2)/2 )];

%p t4:=map(numer,t3); t5:=map(denom,t3); lprint(t2);

%t Numerator[Take[CoefficientList[Series[ArcSin[Csc[x] - Coth[x]], {x,0,26}], x], {2, -1, 2}]] (* _G. C. Greubel_, Nov 13 2016 *)

%Y Cf. A202381.

%K sign,frac

%O 0,2

%A Patrick Demichel (patrick.demichel(AT)hp.com)

%E Corrected by _N. J. A. Sloane_, Dec 18 2011, based on discussions on the Sequence Fans Mailing List, Dec 13-17 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 08:38 EDT 2020. Contains 337268 sequences. (Running on oeis4.)