login
A012755
tan(arctanh(x)*tanh(x))=2/2!*x^2+400/6!*x^6+2688/8!*x^8...
0
0, 2, 0, 400, 2688, 1631488, 60938240, 35243972608, 3826154307584, 2477263324839936, 571708399442198528, 435722170330996801536, 177081722613295659089920, 162107313371111569999527936
OFFSET
0,2
FORMULA
a(n) ~ (2*n)! * sinh(2*r) / ((Pi/2 + (sinh(r))^2/(1-r^2)) * r^(2*n+1)), where r = 0.970313828446324195188532490988552661547225320103102781254845... is the root of the equation arctanh(r)*tanh(r) = Pi/2. - Vaclav Kotesovec, Feb 06 2015
MATHEMATICA
nn = 20; Table[(CoefficientList[Series[Tan[ArcTanh[x]*Tanh[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Feb 06 2015 *)
CROSSREFS
Sequence in context: A012449 A012446 A324687 * A012452 A339269 A013417
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
a(0)=0 prepended by Vaclav Kotesovec, Feb 06 2015
STATUS
approved