OFFSET
0,2
FORMULA
a(n) ~ 4 * (2*n)! / ((Pi / (arcsinh(r)*sqrt(1+r^2)) + 2*arcsinh(r) / (1-r^2)) * r^(2*n+1)), where r = 0.9521457236040528180035996172241256876113834258238... is the root of the equation arctanh(r)*arcsinh(r) = Pi/2. - Vaclav Kotesovec, Feb 06 2015
MATHEMATICA
nn = 20; Table[(CoefficientList[Series[Tan[ArcSinh[x]*ArcTanh[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Feb 06 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
a(0)=0 prepended by Vaclav Kotesovec, Feb 06 2015
STATUS
approved