OFFSET
0,2
COMMENTS
a(n) = 2*A000828(2*n-1). - corrected by Vaclav Kotesovec, Feb 08 2015
FORMULA
E.g.f.: log(sec(2*x))/2, cf. A000182. - Vladeta Jovovic, Jun 04 2005
a(n) = (-1)^(n(2n+1))4^(2n+1)(E{2n+1}(1/2)+E{2n+1}(1)); E_{n}(x) Euler polynomial. - Peter Luschny, Nov 25 2010
G.f.: 2*x/G(0) where G(k) = 1 - (2*k+2)*(2*k+4)*x/G(k+1)) (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 25 2012
G.f.: (2/G(0) - 1)*sqrt(-x), where G(k) = 1 + 1/(1 - 1/(1 + 1/(4*sqrt(-x)*(k+1)) - 1/G(k+1))) (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: 2*x*T(0), where T(k) = 1 - x*(2*k+2)*(2*k+4)/(x*(2*k+2)*(2*k+4) - 1/T(k+1) ) (continued fraction). - Sergei N. Gladkovskii, Oct 12 2013
a(n) ~ 2^(4*n) * (2*n-1)! / Pi^(2*n). - Vaclav Kotesovec, Feb 08 2015
EXAMPLE
arctanh(tan(x)*tan(x)) = (2/2!)*x^2 + (16/4!)*x^4 + (512/6!)*x^6 + (34816/8!)*x^8 + ...
MAPLE
A012393 := n -> (-1)^(n*(2*n+1))*4^(2*n+1)*(euler(2*n+1, 1/2) + euler(2*n+1, 1)) end; # Peter Luschny, Nov 25 2010
MATHEMATICA
nn = 20; Table[(CoefficientList[Series[ArcTanh[Tan[x]^2], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Feb 08 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
a(0)=0 prepended by Joerg Arndt, Oct 26 2012
STATUS
approved