%I #15 Sep 08 2022 08:44:38
%S 0,0,2,-3,12,-40,118,21,-5208,88416,-904518,8456085,-36204300,
%T -582795720,25175931870,-566080291035,10469521737360,-151909726765440,
%U 1439879949016050,12663393759659565,-1154176350734965860
%N Expansion of e.g.f. arcsinh(arcsin(x) * log(x+1)).
%H G. C. Greubel, <a href="/A012310/b012310.txt">Table of n, a(n) for n = 0..436</a>
%e E.g.f. = 2*x^2/2! - 3*x^3/3! + 12*x^4/4! - 40*x^5/5! + ...
%p seq(coeff(series(factorial(n)*arcsinh(arcsin(x)*log(x+1)),x,n+1), x, n), n = 0 .. 20); # _Muniru A Asiru_, Oct 25 2018
%t With[{nn = 30}, CoefficientList[Series[ArcSinh[ArcSin[x] Log[x + 1]], {x, 0, nn}], x] Range[0, nn]!] (* _G. C. Greubel_, Oct 25 2018 *)
%o (PARI) x='x+O('x^30); concat([0,0], Vec(serlaplace(asinh(asin(x)* log(x+1))))) \\ _G. C. Greubel_, Oct 25 2018
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Argsinh(Arcsin(x)*Log(x+1)) )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // _G. C. Greubel_, Oct 25 2018
%K sign
%O 0,3
%A Patrick Demichel (patrick.demichel(AT)hp.com)
%E a(0) and a(1) inserted and title improved by _Sean A. Irvine_, Jul 17 2018