login
A012309
Expansion of e.g.f. sinh(arcsin(x) * log(x+1)).
1
0, 0, 2, -3, 12, -40, 358, -2499, 25032, -229104, 2623482, -29520315, 390572820, -5214039480, 78852514830, -1216517478435, 20752786409040, -362913160817760, 6901242069396210, -134803613131143795
OFFSET
0,3
LINKS
EXAMPLE
E.g.f. = 2*x^2/2! - 3*x^3/3! + 12*x^4/4! - 40*x^5/5! + ...
MAPLE
seq(coeff(series(factorial(n)*sinh(arcsin(x)*log(x+1)), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
With[{nn = 30}, CoefficientList[Series[Sinh[ArcSin[x] Log[x + 1]], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Oct 25 2018 *)
PROG
(PARI) x='x+O('x^30); concat([0, 0], Vec(serlaplace(sinh(asin(x)* log(x+1))))) \\ G. C. Greubel, Oct 25 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Sinh(Arcsin(x)*Log(x+1)) )); [0, 0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Oct 25 2018
CROSSREFS
Sequence in context: A256881 A012514 A012511 * A012305 A012512 A012516
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
a(0) and a(1) inserted and title improved by Sean A. Irvine, Jul 17 2018
STATUS
approved