login
A012308
Expansion of e.g.f. cos(arcsin(x)*log(x+1))=1-12/4!*x^4+60/5!*x^5-450/6!*x^6+2940/7!*x^7...
1
1, 0, 0, 0, -12, 60, -450, 2940, -23408, 179424, -1610280, 13910160, -137455032, 1245692448, -12516311808, 93103526880, -527152105728, -11362927602816, 427180646000448, -13403925787199616, 328077695114329728
OFFSET
0,5
LINKS
EXAMPLE
E.g.f. = 1 - 12*x^4/4! + 60*x^5/5! - 450*x^6/6! + 2940*x^7/7! + ...
MAPLE
seq(coeff(series(factorial(n)*cos(arcsin(x)*log(x+1)), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
With[{nn = 30}, CoefficientList[Series[Cos[ArcSin[x] Log[x + 1]], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Oct 25 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(cos(asin(x)*log(x+1)))) \\ G. C. Greubel, Oct 25 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Cos(Arcsin(x)*Log(x+1)) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 25 2018
CROSSREFS
Sequence in context: A012518 A012315 A009062 * A009154 A012313 A012517
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved