login
A012293
Expansion of e.g.f. sec(sin(x)*exp(x))=1+1/2!*x^2+6/3!*x^3+25/4!*x^4+140/5!*x^5...
1
1, 0, 1, 6, 25, 140, 1177, 10738, 104977, 1188120, 15191889, 211088350, 3187087209, 52357837220, 926871127977, 17553084005322, 354581844112801, 7614153761167920, 173108509344647457, 4153655608324341686
OFFSET
0,4
LINKS
EXAMPLE
E.g.f. = 1 + x^2/2! + 6*x^3/3! + 25*x^4/4! + 140*x^5/5! + ...
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Sec[Sin[x]Exp[x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jan 14 2012 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/cos(sin(x)*exp(x)))) \\ G. C. Greubel, Oct 26 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/Cos(Sin(x)*Exp(x)) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 26 2018
CROSSREFS
Sequence in context: A275541 A082430 A136593 * A012594 A357089 A242858
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved