login
A012279
Expansion of e.g.f. sec(exp(x)*log(x+1)).
1
1, 0, 1, 3, 16, 70, 580, 3850, 39940, 350544, 4408460, 48605788, 715662176, 9518173080, 160469679136, 2503106438040, 47524013744272, 851125166412928, 17967763294589776, 363412179220061872
OFFSET
0,4
LINKS
EXAMPLE
E.g.f. = 1 + x^2/2! + 3*x^3/3! + 16*x^4/4! + 70*x^5/5! + ...
MAPLE
seq(coeff(series(factorial(n)*sec(exp(x)*log(x+1)), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 28 2018
MATHEMATICA
With[{nn = 30}, CoefficientList[Series[Sec[Exp[x]*Log[x+1]], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Oct 28 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/cos(exp(x)*log(x+1)))) \\ G. C. Greubel, Oct 28 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/Cos(Exp(x)*Log(x+1)) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 28 2018
CROSSREFS
Sequence in context: A370248 A370274 A015524 * A037098 A316170 A038602
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved