login
A012252
exp(arcsinh(arcsinh(x))) = 1+x+1/2!*x^2-1/3!*x^3-7/4!*x^4+9/5!*x^5...
0
1, 1, 1, -1, -7, 9, 169, -225, -8751, 11025, 789681, -893025, -110381943, 108056025, 22142611737, -18261468225, -6041067843807, 4108830350625, 2153812782224097, -1187451971330625, -972958293249140583
OFFSET
0,5
FORMULA
a(n) ~ (-1)^(n/2+1) * 2 * sqrt(tan(1)) * n^(n-1) * exp(-n) / (sin(1))^n, if n is even and a(n) ~ (-1)^((n-1)/2) * 2 * n^(n-1)*exp(-n), if n is odd. - Vaclav Kotesovec, Oct 30 2013
MATHEMATICA
CoefficientList[Series[Exp[ArcSinh[ArcSinh[x]]], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 30 2013 *)
CROSSREFS
Sequence in context: A116237 A123746 A152551 * A262538 A306184 A027723
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved