OFFSET
0,2
COMMENTS
Series has radius of convergence arcsinh(Pi/4). It appears that
a(n) ~ c*(2n+1)!*arcsinh(Pi/4)^(-2n-1)/n^(3/2) for some constant c (approximately 0.3816). - Robert Israel, Jun 26 2015
c = 1/2*sqrt((1/2 + 16/(2*Pi*(Pi+sqrt(16+Pi^2))))*arcsinh(Pi/4)) = 0.3820437069654804064083... . - Vaclav Kotesovec, Jun 28 2015
LINKS
Robert Israel, Table of n, a(n) for n = 0..200
EXAMPLE
arcsin(tan(sinh(x))) = x + 4/3!*x^3 + 76/5!*x^5 + 3592/7!*x^7 + 325648/9!*x^9 + ...
MAPLE
S:= series(arcsin(tan(sinh(x))), x, 102):
seq(coeff(S, x, 2*j+1)*(2*j+1)!, j = 0 .. 50); # Robert Israel, Jun 26 2015
MATHEMATICA
Select[ Range[0, 27]! CoefficientList[ Series[ ArcSin[ Tan[ Sinh[x]]], {x, 0, 27}], x], # > 0 &] (* Robert G. Wilson v, Jul 05 2005 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved