OFFSET
1,2
FORMULA
a(n) = ((2*n+1)!*sum(m=0..n, binomial(2*m,m)*2^(-2*m)*(2*m+1)!*(sum(j=0..n-m, (-1)^(n-m+j)*(sum(i=0..2*j,(2^i*Stirling1(2*m+1+i,2*m+1)* binomial(2*m+2*j,2*m+i))/(2*m+1+i)!)) *binomial(n-1/2,n-m-j))))). - Vladimir Kruchinin, Jun 17 2011
EXAMPLE
tan(arcsin(arcsinh(x))) = x + (2/3!)*x^3 + (24/5!)*x^5 + (552/7!)*x^7 + (28032/9!)*x^9 + ...
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Tan[ArcSin[ArcSinh[x]]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Oct 09 2012 *)
PROG
(Maxima)
a(n):=((2*n+1)!*sum(binomial(2*m, m)*2^(-2*m)*(2*m+1)!*(sum((-1)^(n-m+j)*(sum((2^i*stirling1(2*m+1+i, 2*m+1)*binomial(2*m+2*j, 2*m+i))/(2*m+1+i)!, i, 0, 2*j))*binomial(n-1/2, n-m-j), j, 0, n-m)), m, 0, n)); /* Vladimir Kruchinin, Jun 17 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved