OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..219
FORMULA
a(n) = Sum_{m=0..n} ( binomial(2*m,m)*2^(-4*m)*( Sum_{i=0,..,(2*m+1)/2} (2*i-2*m-1)^(2*n+1)*binomial(2*m+1,i)*(-1)^(i+1) ) ). - Vladimir Kruchinin, Jun 15 2011
E.g.f.: sinh(x) / sqrt(1 - sinh(x)^2). - Vaclav Kotesovec, Feb 06 2015
a(n) ~ (2*n+1)! / (sqrt(Pi*n) * 2^(1/4) * (log(1+sqrt(2)))^(2*n+3/2)). - Vaclav Kotesovec, Feb 06 2015
EXAMPLE
tan(arcsin(sinh(x))) = x+4/3!*x^3+76/5!*x^5+3424/7!*x^7+277456/9!*x^9...
MATHEMATICA
nn = 20; Table[(CoefficientList[Series[Sinh[x]/Sqrt[1 - Sinh[x]^2], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 06 2015 *)
Table[Sum[Binomial[2*m, m]*2^(-4*m)*Sum[(2*i - 2*m - 1)^(2*n + 1)*
Binomial[2*m + 1, i]*(-1)^(i + 1), {i, 0, (2*m + 1)/2}], {m, 0, n}], {n, 0, 50}] (* G. C. Greubel, Feb 15 2017 *)
PROG
(Maxima)
a(n):=sum(binomial(2*m, m)*2^(-4*m)*sum((2*i-2*m-1)^(2*n+1)*binomial(2*m+1, i)*(-1)^(i+1), i, 0, (2*m+1)/2), m, 0, n); /* Vladimir Kruchinin, Jun 15 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Typo in second formula corrected (following a suggestion of Sergei N. Gladkovskii) by Vaclav Kotesovec, Apr 17 2017
STATUS
approved