OFFSET
0,3
FORMULA
a(n)=(2*n+1)!*sum(m=0..n, binomial(2*m,m)*2^(-4*m-1)*(2*m+1)!*(-1)^(n+m)*sum(i=2*m+1..2*n+1, (2^i*stirling1(i,2*m+1)*binomial(2*n,i-1))/i!)). [Vladimir Kruchinin, Jun 15 2011]
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Tan[ArcSin[ArcTan[x]]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Jun 12 2017 *)
PROG
(Maxima)
a(n):=(2*n+1)!*sum(binomial(2*m, m)*2^(-4*m-1)*(2*m+1)!*(-1)^(n+m)*sum((2^i*stirling1(i, 2*m+1)*binomial(2*n, i-1))/i!, i, 2*m+1, 2*n+1), m, 0, n); [Vladimir Kruchinin, Jun 15 2011]
CROSSREFS
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved