The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A012026 Expansion of e.g.f. tanh(sin(arctan(x))) = tanh(x/sqrt(1+x^2)) (odd powers only). 0
 1, -5, 121, -6677, 651985, -98741477, 21378584137, -6259615830197, 2380487154907681, -1140222272527932869, 671453734616884934041, -476714184862146843059285, 401522701697360654591942641 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n) = ((2*n+1)!*sum(m=0..n, binomial(n-1/2,n-m)/(2*m+1)!*sum(k=1..2*m+1, (-1)^(n-m+k+1)*k!*2^(2*m+1-k)*Stirling2(2*m+1,k)))). - Vladimir Kruchinin, Jun 17 2011 E.g.f.: tanh(x/sqrt(1+x^2)) = (x/sqrt(1+x^2))*G(0) where G(k)= 1 - x^2/(x^2 + (1+x^2)*(2*k+1)*(2*k+3)/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 06 2012 a(n) ~ (2*n-1)! * (-1)^(n+1) * 16 * (4+Pi^2)^(n-3/2) / Pi^(2*n). - Vaclav Kotesovec, Feb 02 2015 EXAMPLE tanh(sin(arctan(x))) = x - (5/3!)*x^3 + (121/5!)*x^5 - (6677/7!)*x^7 + (651985/9!)*x^9 - ... MATHEMATICA nn = 20; Table[(CoefficientList[Series[Tanh[x/Sqrt[1 + x^2]], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 02 2015 *) PROG (Maxima) a(n):=((2*n+1)!*sum(binomial(n-1/2, n-m)/(2*m+1)!*sum((-1)^(n-m+k+1)*k!*2^(2*m+1-k)*stirling2(2*m+1, k), k, 1, 2*m+1), m, 0, n)); /* Vladimir Kruchinin, Jun 17 2011 */ CROSSREFS Sequence in context: A282271 A179299 A012179 * A012190 A012077 A012046 Adjacent sequences: A012023 A012024 A012025 * A012027 A012028 A012029 KEYWORD sign AUTHOR Patrick Demichel (patrick.demichel(AT)hp.com) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 30 19:10 EST 2023. Contains 359947 sequences. (Running on oeis4.)