login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A012025 E.g.f. arcsinh(sin(arctan(x))) = arcsinh(x/(1+x^2)^(1/2)) (odd powers only). 0
1, -4, 84, -4320, 418320, -66225600, 15657364800, -5187108326400, 2296766568096000, -1310785979158656000, 937056917610253440000, -820081468493365478400000, 862301491174096979765760000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..13.

FORMULA

E.g.f. arcsinh(sin(arctan(x))) = arcsinh(x/(1+x^2)^(1/2)).

arcsinh(x/(1+x^2)^(1/2)) = x/sqrt(1+x^2)*(1 - x^2/(G(0)+x^2)) where G(k) = 4*k^2 + k*(10+6*x^2) + 5*x^2 + 6 + 2*x^2*(1+x^2)*(k+1)*(2*k+3)^3/G(k+1) ; (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 08 2012

a(n) ~ (-1)^(n+1) * 2^(3*n-1) * n^(2*n-2) / exp(2*n). - Vaclav Kotesovec, Oct 30 2013

EXAMPLE

arcsinh(sin(arctan(x)))=x-4/3!*x^3+84/5!*x^5-4320/7!*x^7+418320/9!*x^9...

MATHEMATICA

Table[n!*SeriesCoefficient[ArcSinh[x/(1+x^2)^(1/2)], {x, 0, n}], {n, 1, 40, 2}] (* Vaclav Kotesovec, Oct 30 2013 *)

CROSSREFS

Sequence in context: A012065 A012139 A012037 * A012107 A012189 A012076

Adjacent sequences: A012022 A012023 A012024 * A012026 A012027 A012028

KEYWORD

sign

AUTHOR

Patrick Demichel (patrick.demichel(AT)hp.com)

EXTENSIONS

Confirmed by N. J. A. Sloane, Dec 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 21:40 EST 2022. Contains 358594 sequences. (Running on oeis4.)