login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A012024 E.g.f. sinh(sin(arctan(x))) (odd powers only). 0
1, -2, 16, -104, -20096, 4427776, -954111872, 243390205696, -75389245067264, 28248828019830784, -12669814369258471424, 6721694045416881553408, -4170436153219300846567424, 2994608522937575414450814976 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..14.

FORMULA

a(n) = ((2*n+1)!*sum(m=0..n, C(n-1/2,n-m)*(-1)^(n-m)/(2*m+1)!)). - Vladimir Kruchinin, Jun 16 2011

a(n) = -2*(6*n^2 - 6*n + 1)*a(n-1) - 12*(n-1)^2*(2*n-3)*(2*n-1)*a(n-2) - 4*(n-2)*(n-1)*(2*n-5)*(2*n-3)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Nov 09 2013

Lim sup n->infinity |a(n)|/(2^(2*n+5/3) * exp(3/4*(2*n)^(1/3)-2*n) * n^(2*n+2/3) / sqrt(3)) = 1. - Vaclav Kotesovec, Nov 09 2013

EXAMPLE

sinh(sin(arctan(x))) = x-2/3!*x^3+16/5!*x^5-104/7!*x^7-20096/9!*x^9...

MATHEMATICA

Table[n!*SeriesCoefficient[Sinh[x/Sqrt[1+x^2]], {x, 0, n}], {n, 1, 41, 2}] (* Vaclav Kotesovec, Nov 08 2013 *)

PROG

(Maxima)

a(n):=((2*n+1)!*sum(binomial(n-1/2, n-m)*(-1)^(n-m)/(2*m+1)!, m, 0, n)); [Vladimir Kruchinin, Jun 16 2011]

CROSSREFS

Sequence in context: A187248 A236958 A009619 * A349008 A193217 A329550

Adjacent sequences: A012021 A012022 A012023 * A012025 A012026 A012027

KEYWORD

sign

AUTHOR

Patrick Demichel (patrick.demichel(AT)hp.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 01:51 EST 2022. Contains 358672 sequences. (Running on oeis4.)