The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A012023 Expansion of e.g.f. cos(sin(arctan(x))) (even powers). 0
 1, -1, 13, -421, 25369, -2449801, 346065061, -67243537453, 17192488230961, -5593309059948049, 2255588021494237501, -1103994926592923677621, 644587811150505183179593, -442516027690815793746696601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) = (2*n)!*(-1)^n*sum(j=0..n, binomial(n-1,n-j)/(2*j)!). - Vladimir Kruchinin, May 19 2011 a(n) = -(12*n^2-24*n+13)*a(n-1) - 12*(n-2)*(n-1)*(2*n-3)^2*a(n-2) - 16*(n-3)*(n-2)^2*(n-1)*(2*n-5)*(2*n-3)*a(n-3). - Vaclav Kotesovec, Nov 08 2013 a(n) ~ (-1)^n * (2*n)^(2*n-1/3) * exp(3/2*(2*n)^(1/3) - 2*n) / sqrt(3) * (1 - 19/72*2^(2/3)/n^(1/3) + 553/5184*2^(1/3)/n^(2/3)). - Vaclav Kotesovec, Nov 08 2013 EXAMPLE cos(sin(arctan(x))) = 1 - (1/2!)*x^2 + (13/4!)*x^4 - (421/6!)*x^6 + (25369/8!)*x^8 - ... MATHEMATICA With[{nn=30}, Take[CoefficientList[Series[Cos[Sin[ArcTan[x]]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, May 07 2012 *) PROG (Maxima) a(n):=(2*n)!*(-1)^n*sum(binomial(n-1, n-j)/(2*j)!, j, 0, n); /* Vladimir Kruchinin, May 19 2011 */ CROSSREFS Sequence in context: A087872 A308341 A098890 * A081442 A100872 A012045 Adjacent sequences: A012020 A012021 A012022 * A012024 A012025 A012026 KEYWORD sign AUTHOR Patrick Demichel (patrick.demichel(AT)hp.com) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 14:52 EST 2022. Contains 358468 sequences. (Running on oeis4.)