login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A012021 Expansion of e.g.f.: tan(sin(arctan(x))) (odd powers only). 1
1, -1, 1, 167, -14303, 1383887, -170123615, 26560717367, -5162935778879, 1219537456849055, -340794504958201919, 109077799391707298759, -38112045733323708444959, 13139859774638771226676847 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = (2*n-1)!*sum(m=1..n, (sum(j=1..2*m-1, j!*2^(2*m-j-1)*(-1)^(n+j)*Stirling2(2*m-1,j)))*binomial((2*n-3)/2,(n-m))/(2*m-1)!), n>0. - Vladimir Kruchinin, May 19 2011

EXAMPLE

tan(sin(arctan(x))) = x - (1/3!)*x^3 + (1/5!)*x^5 + (167/7!)*x^7 - (14303/9!)*x^9 + ...

MATHEMATICA

nn = 20; Table[(CoefficientList[Series[Tan[x/Sqrt[1 + x^2]], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 03 2015 *)

PROG

(Maxima)

a(n):=(2*n-1)!*sum((sum(j!*2^(2*m-j-1)*(-1)^(n+j)*stirling2(2*m-1, j), j, 1, 2*m-1))*binomial((2*n-3)/2, (n-m))/(2*m-1)!, m, 1, n); /* Vladimir Kruchinin, May 19 2011 */

CROSSREFS

Sequence in context: A201853 A142843 A290757 * A175558 A289743 A308280

Adjacent sequences: A012018 A012019 A012020 * A012022 A012023 A012024

KEYWORD

sign

AUTHOR

Patrick Demichel (patrick.demichel(AT)hp.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 23:46 EST 2022. Contains 358572 sequences. (Running on oeis4.)