login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A012020 Expansion of e.g.f.: sin(sin(arctan(x))) (odd powers only). 0
1, -4, 76, -3256, 245008, -28441216, 4700478784, -1047088053376, 302112622479616, -109527844826856448, 48716214653800569856, -26075068739563056830464, 16529214537740143196901376 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..12.

FORMULA

a(n) = (2*n+1)!*(-1)^n*sum(j=1..n+1, binomial((2*n-1)/2,(n+1-j))/(2*j-1)!). [Vladimir Kruchinin, May 19 2011]

a(n) = (2*n+1)! * [x^(2*n+1)] sin(sin(arctan(x))).

a(n) = -4*(3*n^2-3*n+1)*a(n-1) - 12*(n-1)^2*(2*n-3)*(2*n-1)*a(n-2) - 4*(n-2)*(n-1)*(2*n-5)*(2*n-3)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Nov 08 2013

a(n) ~ (-1)^n * (2*n)^(2*n+2/3) * exp(3/2*2^(1/3)*n^(1/3)-2*n) / sqrt(3) * (1 - 19/72*2^(2/3)/n^(1/3) + 1849/5184*2^(1/3)/n^(2/3)). - Vaclav Kotesovec, Nov 08 2013

EXAMPLE

sin(sin(arctan(x)))=x-4/3!*x^3+76/5!*x^5-3256/7!*x^7+245008/9!*x^9-+...

MATHEMATICA

Table[n!*SeriesCoefficient[Sin[x/Sqrt[1+x^2]], {x, 0, n}], {n, 1, 41, 2}] (* Vaclav Kotesovec, Nov 08 2013 *)

PROG

(Maxima) a(n):=(2*n+1)!*(-1)^n*sum(binomial((2*n-1)/2, (n+1-j))/(2*j-1)!, j, 1, n+1); /* Vladimir Kruchinin, May 19 2011 */

CROSSREFS

Sequence in context: A220958 A187542 A009631 * A012041 A024258 A012101

Adjacent sequences: A012017 A012018 A012019 * A012021 A012022 A012023

KEYWORD

sign

AUTHOR

Patrick Demichel (patrick.demichel(AT)hp.com)

EXTENSIONS

Definition corrected by Joerg Arndt, May 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 14:52 EST 2022. Contains 358468 sequences. (Running on oeis4.)