The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A012019 E.g.f.: exp(sin(arctan(x))). 0
 1, 1, 1, -2, -11, 16, 301, -104, -15287, -20096, 1239481, 4427776, -146243459, -954111872, 23567903269, 243390205696, -4951201340399, -75389245067264, 1307274054385393, 28248828019830784, -420773143716828539 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA a(n) = (n!*sum(k=1..n, (C((n-2)/2,(n-k)/2)*(-1)^((n-k)/2)*((-1)^(n-k)+1))/k!))/2, n>0, a(0)=1. - Vladimir Kruchinin, May 18 2011 E.g.f.: exp(x/sqrt(1+x^2)). - Vaclav Kotesovec, Nov 08 2013 a(n) = -(3*n^2 - 12*n + 11)*a(n-2) - 3*(n-4)*(n-3)^2*(n-2)*a(n-4) - (n-6)*(n-5)*(n-4)^2*(n-3)*(n-2)*a(n-6). - Vaclav Kotesovec, Nov 09 2013 Lim sup n->infinity |a(n)|/(2*n^(n-1/3)*exp(3/4*n^(1/3)-n)/sqrt(3)) = 1. - Vaclav Kotesovec, Nov 09 2013 Limit n->infinity a(n)/(2*n^(n-1/3)*exp(3/4*n^(1/3)-n)/sqrt(3)) - cos(3/4*sqrt(3)*n^(1/3) + Pi/6 - Pi/2*mod(n,4)) = 0. - Vaclav Kotesovec, Nov 09 2013 EXAMPLE exp(sin(arctan(x))) = 1+x+1/2!*x^2-2/3!*x^3-11/4!*x^4+16/5!*x^5+... MATHEMATICA CoefficientList[Series[E^(x/Sqrt[1+x^2]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 08 2013 *) PROG (Maxima) a(n):=(n!*sum((binomial((n-2)/2, (n-k)/2)*(-1)^((n-k)/2)*((-1)^(n-k)+1))/k!, k, 1, n))/2; [Vladimir Kruchinin, May 18 2011] CROSSREFS Sequence in context: A091211 A306278 A199397 * A012185 A012253 A103336 Adjacent sequences: A012016 A012017 A012018 * A012020 A012021 A012022 KEYWORD sign AUTHOR Patrick Demichel (patrick.demichel(AT)hp.com) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 15:30 EST 2022. Contains 358468 sequences. (Running on oeis4.)