

A011974


2 followed by the numbers that are the sum of 2 successive primes.


16



2, 5, 8, 12, 18, 24, 30, 36, 42, 52, 60, 68, 78, 84, 90, 100, 112, 120, 128, 138, 144, 152, 162, 172, 186, 198, 204, 210, 216, 222, 240, 258, 268, 276, 288, 300, 308, 320, 330, 340, 352, 360, 372, 384, 390, 396, 410, 434, 450, 456, 462, 472, 480, 492, 508, 520
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All the terms in the sequence, except a(2), are even.  K. D. Bajpai, Aug 26 2014


REFERENCES

Archimedeans Problems Drive, Eureka, 26 (1963), 12.


LINKS

K. D. Bajpai, Table of n, a(n) for n = 1..10000


FORMULA

Essentially same as A001043.


EXAMPLE

From K. D. Bajpai, Aug 26 2014: (Start)
a(6) = 24 is in the sequence because 24 = 11 + 13, sum of two successive primes.
a(8) = 36 is in the sequence because 36 = 13 + 23, sum of two successive primes.
(End)


MATHEMATICA

Join[{2}, Total/@Partition[Prime[Range[40]], 2, 1]] (* Harvey P. Dale, May 04 2013 *)


CROSSREFS

Cf. A000040.
Sequence in context: A022942 A183861 A024534 * A049633 A066614 A045746
Adjacent sequences: A011971 A011972 A011973 * A011975 A011976 A011977


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


EXTENSIONS

The terms a(40) to a(56) from K. D. Bajpai, Aug 26 2014


STATUS

approved



