

A011970


Apply (1+Shift)^3 to Bell numbers.


4



1, 4, 8, 15, 37, 114, 409, 1657, 7432, 36401, 192713, 1094076, 6618379, 42436913, 287151994, 2042803419, 15229360185, 118645071202, 963494800557, 8138047375093, 71351480138824, 648222594284197, 6092330403828749
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Starting with n=3 (a(3)=15), number of set partitions of n+2 with at least one singleton and the smallest element in any singleton is exactly n2. The maximum number of singletons is therefore 5. Alternatively, starting with n=3, number of set partitions of n+2 with at least one singleton and the largest element in any singleton is exactly 5.  Olivier Gérard, Oct 29 2007
Let V(N)={v(1),v(2),...,v(N)} denote an ordered set of increasing positive integers containing 3 pairs of adjacent elements that differ by at least 2, that is, v(i),v(i+1) with v(i+1)v(i)>1. Then for n>2, a(n) is the number of partitions of V(n+1) into blocks of nonconsecutive integers.  Augustine O. Munagi, Jul 17 2008


REFERENCES

Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011


LINKS

Chai Wah Wu, Table of n, a(n) for n = 0..500
Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782785. MR1531841.
Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782785. MR1531841. [Annotated scanned copy]
Augustine O. Munagi, Extended set partitions with successions, European J. Combin. 29(5) (2008), 12981308.
Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.


FORMULA

If n>2, then bell(n)+3*bell(n1)+3*bell(n2)+bell(n3).  Augustine O. Munagi, Jul 17 2008


EXAMPLE

a(3)=15 because the set {1,3,5,7} has 15 different partitions which are necessarily into blocks of nonconsecutive integers.


MAPLE

with(combinat): 1, 4, 8, seq(`if`(n>2, bell(n)+3*bell(n1)+3*bell(n2)+bell(n3), NULL), n=3..22); # Augustine O. Munagi, Jul 17 2008


PROG

(Python)
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
from itertools import accumulate
A011970_list, blist, b, b2, b3 = [1, 4, 8], [1, 2], 2, 1, 1
for _ in range(498):
....blist = list(accumulate([b]+blist))
....A011970_list.append(3*(b+b2)+b3+blist[1])
....b3, b2, b = b2, b, blist[1]
# Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014


CROSSREFS

Cf. A000110.
Cf. A011968, A011969.
A diagonal of A011971 and A106436.  N. J. A. Sloane, Jul 31 2012
Sequence in context: A301203 A018921 A103536 * A111988 A110652 A059373
Adjacent sequences: A011967 A011968 A011969 * A011971 A011972 A011973


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


STATUS

approved



