

A011967


4th differences of Bell numbers.


3



4, 15, 67, 322, 1657, 9089, 52922, 325869, 2114719, 14418716, 103004851, 769052061, 5987339748, 48506099635, 408157244967, 3561086589202, 32164670915029, 300324194090773, 2894932531218482, 28773297907499129
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Chai Wah Wu, Table of n, a(n) for n = 0..250
Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782785. MR1531841.
Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782785. MR1531841. [Annotated scanned copy]
Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.


MATHEMATICA

Differences[BellB[Range[0, 50]], 4] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)


PROG

(Python)
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
from itertools import accumulate
A011967_list, blist, b = [4], [5, 7, 10, 15], 15
for _ in range(250):
....blist = list(accumulate([b]+blist))
....b = blist[1]
....A011967_list.append(blist[5]) # Chai Wah Wu, Sep 20 2014


CROSSREFS

Cf. A000110, A005493, A011965, A011966, A106436.
Sequence in context: A097422 A102129 A164310 * A250886 A055732 A125062
Adjacent sequences: A011964 A011965 A011966 * A011968 A011969 A011970


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


STATUS

approved



