login
a(n) = floor( n*(n-1)*(n-2)*(n-3)/23 ).
1

%I #27 Nov 03 2024 09:34:05

%S 0,0,0,0,1,5,15,36,73,131,219,344,516,746,1044,1424,1899,2483,3193,

%T 4044,5055,6245,7633,9240,11088,13200,15600,18313,21365,24783,28596,

%U 32833,37523,42699,48392,54636,61466,68916,77024,85827,95363,105673,116796,128775,141653,155473,170280,186120,203040,221088

%N a(n) = floor( n*(n-1)*(n-2)*(n-3)/23 ).

%H G. C. Greubel, <a href="/A011933/b011933.txt">Table of n, a(n) for n = 0..2500</a>

%H <a href="/index/Rec#order_27">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-4,6,-4,1).

%F From _Chai Wah Wu_, Aug 02 2020: (Start)

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-23) - 4*a(n-24) + 6*a(n-25) - 4*a(n-26) + a(n-27) for n > 26.

%F G.f.: x^4*(1+x^2)*(1 + x + x^3 - x^5 + 4*x^6 - x^7 - x^8 + 2*x^9 + 2*x^11 - x^12 - x^13 + 4*x^14 - x^15 + x^17 + x^19 + x^20)/((1-x)^4*(1-x^23)). (End)

%t Table[Floor[(n(n-1)(n-2)(n-3))/23],{n,0,60}] (* _Harvey P. Dale_, Jun 22 2011 *)

%o (PARI) a(n) = n*(n-1)*(n-2)*(n-3)\23; \\ _Michel Marcus_, Jun 14 2017

%o (Magma) [Floor(24*Binomial(n,4)/23): n in [0..80]]; // _G. C. Greubel_, Nov 03 2024

%o (SageMath) [24*binomial(n,4)//23 for n in range(81)] # _G. C. Greubel_, Nov 03 2024

%Y Cf. A000332, A011915, A052762.

%K easy,nonn,changed

%O 0,6

%A _N. J. A. Sloane_

%E More terms added by _G. C. Greubel_, Nov 03 2024