OFFSET
0,6
LINKS
Edward Jiang, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1, 0, 0, 1, -4, 6, -4, 1).
FORMULA
a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +a(n-7) -4*a(n-8) +6*a(n-9) -4*a(n-10) +a(n-11). G.f.: x^4*(x^6+4*x^5-x^4+4*x^3-x^2+4*x+1) / ((1-x)^5*(x^6+x^5+x^4+x^3+x^2+x+1) ). - R. J. Mathar, Apr 15 2010
MAPLE
seq(floor(n*(n-1)*(n-2)*(n-3)/14), n = 0 .. 100); # Robert Israel, Aug 05 2014
MATHEMATICA
Table[Floor[(n(n-1)(n-2)(n-3))/14], {n, 0, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1, 0, 0, 1, -4, 6, -4, 1}, {0, 0, 0, 0, 1, 8, 25, 60, 120, 216, 360}, 41] (* Harvey P. Dale, Jul 07 2011 *)
PROG
(PARI) a(n)=floor(n*(n-1)*(n-2)*(n-3)/14) \\ Edward Jiang , Aug 05 2014
(PARI) a(n)=binomial(n, 4)*12\7 \\ Charles R Greathouse IV, May 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved