%I #26 Oct 21 2024 04:34:36
%S 0,0,0,0,0,1,3,6,10,15,22,30,41,53,68,85,105,127,153,181,213,249,288,
%T 332,379,431,487,548,614,685,761,842,930,1023,1122,1227,1338,1456,
%U 1581,1713,1852,1998,2152,2313,2483,2660,2846,3040,3243,3454,3675,3904,4143,4392,4650,4919,5197,5486,5785,6095,6416,6748,7091,7445,7812,8190
%N a(n) = floor(n*(n - 1)*(n - 2)/32).
%H G. C. Greubel, <a href="/A011914/b011914.txt">Table of n, a(n) for n = 0..2000</a>
%H <a href="/index/Rec#order_35">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-3,3,-1).
%F G.f.: x^5*(1-x+x^2)*(1 +x -x^3 -x^4 +x^5 +x^6 +2*x^7 -x^8 -x^9 -x^10 +x^11 +x^12 +2*x^13 -x^14 -x^15 +2*x^18 -x^21 +x^23 +x^24 -x^26 +x^27)/((1-x)^4*(1 +x)*(1+x^2)*(1+x^4)*(1+x^8)*(1+x^16)). - _Peter J. C. Moses_, Jun 02 2014
%p A011914:=n->floor(n*(n-1)*(n-2)/32); seq(A011914(n), n=0..80); # _Wesley Ivan Hurt_, Jun 02 2014
%t Table[Floor[n (n-1)(n-2)/32], {n,0,80}] (* _Wesley Ivan Hurt_, Jun 02 2014 *)
%o (Magma) [Floor(n*(n-1)*(n-2)/32): n in [0..80]]; // _Wesley Ivan Hurt_, Jun 02 2014
%o (PARI) a(n) = n*(n-1)*(n-2)\32 \\ _Jianing Song_, Oct 15 2018
%o (SageMath) [3*binomial(n,3)//16 for n in range(81)] # _G. C. Greubel_, Oct 20 2024
%Y Cf. A011886.
%K nonn,easy
%O 0,7
%A _N. J. A. Sloane_, Dec 11 1996
%E More terms added by _G. C. Greubel_, Oct 20 2024