login
A011902
a(n) = floor( n*(n-1)*(n-2)/20 ).
2
0, 0, 0, 0, 1, 3, 6, 10, 16, 25, 36, 49, 66, 85, 109, 136, 168, 204, 244, 290, 342, 399, 462, 531, 607, 690, 780, 877, 982, 1096, 1218, 1348, 1488, 1636, 1795, 1963, 2142, 2331, 2530, 2741, 2964, 3198, 3444, 3702, 3973, 4257, 4554, 4864, 5188, 5527, 5880, 6247, 6630, 7027, 7441, 7870, 8316, 8778, 9256, 9752, 10266, 10797, 11346, 11913, 12499, 13104, 13728, 14371
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-3,3,-1).
FORMULA
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +3*a(n-1) -3*a(n-2) +a(n-3) +a(n-20) -3*a(n-21) +3*a(n-22) -a(n-23).
G.f.: x^4*(1+x^4+x^5-x^6+2*x^8-2*x^9+3*x^10-2*x^11+2*x^12-x^13+2*x^15-x^17+x^18)/((1-x)^4*(1+x)*(1+x^2)*(1+x+x^2+x^3+x^4)*(1-x+x^2-x^3+x^4)*(1-x^2+x^4-x^6+x^8)). (End)
MATHEMATICA
Table[Floor[(n(n-1)(n-2))/20], {n, 0, 80}] (* Harvey P. Dale, Mar 23 2011 *)
PROG
(Magma) [Floor(3*Binomial(n, 3)/10): n in [0..80]]; // G. C. Greubel, Oct 18 2024
(SageMath) [3*binomial(n, 3)//10 for n in range(81)] # G. C. Greubel, Oct 18 2024
CROSSREFS
Cf. A011886.
Sequence in context: A376708 A280709 A025222 * A025004 A145131 A265072
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Oct 18 2024
STATUS
approved