login
A011899
a(n) = floor(n*(n-1)*(n-2)/17).
2
0, 0, 0, 0, 1, 3, 7, 12, 19, 29, 42, 58, 77, 100, 128, 160, 197, 240, 288, 342, 402, 469, 543, 625, 714, 811, 917, 1032, 1156, 1289, 1432, 1586, 1750, 1925, 2112, 2310, 2520, 2742, 2977, 3225, 3487, 3762, 4051
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-3,3,-1).
FORMULA
G.f.: (x^4*(1+x^2-x^3+x^4+x^5+x^9+x^10-x^11+x^12+x^13-x^14+x^15))/(1+x*(-3+x*(3+x*(-1+(-1+x)^3*x^14)))). - Peter J. C. Moses, Jun 02 2014
MAPLE
A011899:=n->floor(n*(n-1)*(n-2)/17): seq(A011899(n), n=0..100); # Wesley Ivan Hurt, Jan 22 2017
MATHEMATICA
Floor[6*Binomial[Range[0, 50], 3]/17] (* G. C. Greubel, Oct 16 2024 *)
PROG
(PARI) a(n) = n*(n-1)*(n-2)\17; \\ Michel Marcus, Jan 23 2017
(Magma) [Floor(n*(n-1)*(n-2)/17) : n in [0..60]]; // Wesley Ivan Hurt, Apr 23 2021
(SageMath) [6*binomial(n, 3)//17 for n in range(51)] # G. C. Greubel, Oct 16 2024
CROSSREFS
Sequence in context: A062714 A337300 A039677 * A002498 A172115 A328655
KEYWORD
nonn,easy
STATUS
approved