login
A011829
Number of f-vectors for simplicial complexes of dimension at most 4 on at most n-1 vertices.
1
2, 3, 5, 10, 26, 96, 552, 4908, 48230, 398663, 2631241, 14192097, 64663638, 256174350, 902972232, 2883651027, 8463753978, 23094833355, 59133598085, 143164108028, 329810868994, 726833391860, 1539215246944, 3144340388550
OFFSET
1,1
COMMENTS
Apparently a polynomial (n^15)/32659200 + .... [Frank Ellermann]
REFERENCES
D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3 (p. 743).
S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.
FORMULA
Empirical G.f.: -x*(x^15 -16*x^14 +114*x^13 -1154*x^12 -2541*x^11 -16919*x^10 -6585*x^9 -17282*x^8 +9460*x^7 -8548*x^6 +5196*x^5 -2426*x^4 +830*x^3 -197*x^2 +29*x -2)/(x -1)^16. [Colin Barker, Sep 18 2012]
CROSSREFS
KEYWORD
nonn
AUTHOR
Svante Linusson (linusson(AT)math.kth.se)
STATUS
approved