This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011818 Normalized volume of center slice of n-dimensional cube: 2^n* n!*Vol({ (x_1,...,x_n) in [ 0,1 ]^n: n/2 <= Sum_{i = 1..n} x_i <= (n+1)/2 }). 2
 1, 3, 16, 115, 1056, 11774, 154624, 2337507, 39984640, 763546234, 16101629952, 371644257582, 9319104528384, 252270887452380, 7332475985461248, 227761317947788323, 7529455986838732800, 263948439074152148450 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS D. Chakerian, D. Logothetti, CubeSlices, Pictorial Triangles, and Probability, Math. Mag., Vol. 64 (1991) 219-241. FORMULA V(d) = sum_{k=1}^{d-1} {d choose k-1} A_{d, k} where A_{k, d} denotes the Eulerian number (permutations of a d-set with k-1 descents) - see A008292. Restated: a(n) = Sum_{k = 1..n} C(n,k-1)*A008292(n,k) for n>=1. From Peter Bala, Jun 28 2016: (Start) a(n) = 1/2*Sum_{k = 0..floor((n+1)/2)} (-1)^k*binomial(n + 1,k)*(n + 1 - 2*k)^n. a(n) ~ sqrt(3)/2*(2/e)^(n+1)*(n+1)^n. (End) a(2*n-1)/2^(2*n-2) = A025585(n) for n>=1. - Peter Luschny, Jun 30 2016 MAPLE a := n -> add(binomial(n, k)*eulerian1(n, k), k=0..n-1): seq(a(n), n=1..18); # Peter Luschny, Jun 30 2016 CROSSREFS Cf. A008292, A025585, A104098. Sequence in context: A211210 A177402 A036244 * A036248 A111555 A221409 Adjacent sequences:  A011815 A011816 A011817 * A011819 A011820 A011821 KEYWORD nonn,easy AUTHOR Guenter M. Ziegler (ziegler(AT)math.tu-berlin.de) EXTENSIONS More terms from Paul D. Hanna, Mar 15 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 03:13 EST 2019. Contains 319260 sequences. (Running on oeis4.)