login
a(n) = prime(n*(n+1)/2).
10

%I #43 Sep 03 2024 20:21:01

%S 2,5,13,29,47,73,107,151,197,257,317,397,467,571,659,769,883,1019,

%T 1151,1291,1453,1607,1783,1987,2153,2371,2593,2791,3037,3307,3541,

%U 3797,4073,4357,4657,4973,5303,5641,5939,6301,6679,7019,7477

%N a(n) = prime(n*(n+1)/2).

%C There are n distinct successive primes p (not appearing in the sequence) such that a(n) < p < a(n+1). - _David James Sycamore_, Jul 22 2018

%H Reinhard Zumkeller, <a href="/A011756/b011756.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a>.

%F a(n) is asymptotic to (n*(n+1)/2) * log(n*(n+1)/2) = (n*(n+1)/2) * (log(n)+log(n+1)-log(2)) ~ (n^2 + n)*(2 log n)/2 ~ (n^2 + n)*(log n). - _Jonathan Vos Post_, Mar 12 2006

%F a(n) = A000040(A000217(n)). - _David James Sycamore_, Sep 03 2024

%p seq(ithprime(n*(n+1)/2),n=1..50); # _Muniru A Asiru_, Jul 22 2018

%t Prime[#]&/@Accumulate[Range[50]] (* _Harvey P. Dale_, Mar 23 2015 *)

%o (Magma) [NthPrime(n*(n+1) div 2): n in [1..100] ]; // _Vincenzo Librandi_, Apr 11 2011

%o (Haskell)

%o a011756 n = a011756_list !! (n-1)

%o a011756_list = map a000040 $ tail a000217_list

%o -- _Reinhard Zumkeller_, Sep 23 2011

%o (PARI) a(n) = prime(n*(n+1)/2); \\ _Michel Marcus_, Jul 22 2018

%Y Primes in leading diagonal of triangle in A078721.

%Y Cf. A000040, A000217, A034953.

%Y Cf. A195678.

%Y Cf. A000720.

%K nonn

%O 1,1

%A _Jeff Burch_