The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011745 A binary m-sequence: expansion of reciprocal of x^32 + x^28 + x^27 + x + 1 (mod 2, shifted by 31 initial 0's). 18
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Periodic with period 2^32-1 = 3*5*17*257*65537 = 4294967295. - M. F. Hasler, Feb 17 2018 REFERENCES S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967. H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408. LINKS Index entries for linear recurrences with constant coefficients, order 4294967295. MATHEMATICA Join[Table[0, 31], Mod[CoefficientList[1/(x^32 + x^28 + x^27 + x + 1) + O[x]^50, x], 2]] (* Jean-François Alcover, Feb 23 2018 *) PROG (PARI) A011745_vec=concat([1..31]*0, Vec(1/(x^32+x^28+x^27+x+1)+O(x^99))%2) A=matrix(N=32, N, i, j, if(i>1, i==j+1, setsearch([1, 27, 28, N], j)))*Mod(1, 2); A011745(n)=lift((A^(n-#A+1))[1, 1]) \\ M. F. Hasler, Feb 17 2018 CROSSREFS Cf. A011655..A011744 for other binary m-sequences, and A011746..A011751 for similar expansions over GF(2). Sequence in context: A322438 A304572 A070204 * A011744 A011743 A011742 Adjacent sequences:  A011742 A011743 A011744 * A011746 A011747 A011748 KEYWORD nonn,easy AUTHOR EXTENSIONS Edited by M. F. Hasler, Feb 17 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 05:50 EDT 2020. Contains 336290 sequences. (Running on oeis4.)