%I #21 Nov 11 2023 03:34:18
%S 6,108,4488,376200
%N Number of vertices of secondary polytope for triangle X n-simplex.
%D Gelfand, Kapranov and Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, 1994, pp. 243-250.
%H J. A. de Loera, <a href="https://doi.org/10.1007/BF02711494">Nonregular triangulations of products of simplices</a>, Discrete Comp. Geom. 15(3) (1996), 253-264.
%Y Cf. A011556, A011781, A122722, A273464, A326367, A326368, A326369.
%K nonn,hard,more
%O 1,1
%A _N. J. A. Sloane_