login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A011262 In the prime factorization of n, increment odd powers and decrement even powers (multiplicative and self-inverse). 3
1, 4, 9, 2, 25, 36, 49, 16, 3, 100, 121, 18, 169, 196, 225, 8, 289, 12, 361, 50, 441, 484, 529, 144, 5, 676, 81, 98, 841, 900, 961, 64, 1089, 1156, 1225, 6, 1369, 1444, 1521, 400, 1681, 1764, 1849, 242, 75, 2116, 2209, 72, 7, 20, 2601, 338, 2809, 324, 3025, 784, 3249 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Paul Tek, Table of n, a(n) for n = 1..10000

Index entries for sequences that are permutations of the natural numbers

FORMULA

Multiplicative with f(p^k) = p^(k-1) if k even, p^(k+1) if k odd.

a(n) = product(A027748(n,k) ^ A103889(A124010(n,k)): k = 1..A001221(n)). - Reinhard Zumkeller, Jun 23 2013

MATHEMATICA

f[n_, k_] := n^(If[EvenQ[k], k - 1, k + 1]); Table[Times @@ f @@@ FactorInteger[n], {n, 57}] (* Jayanta Basu, Aug 14 2013 *)

PROG

(PARI) a(n)=my(f=factor(n)); return(prod(i=1, #f[, 1], f[i, 1]^(f[i, 2]-(-1)^f[i, 2]))) /* Paul Tek, Jun 01 2013 */

(Haskell)

a011262 n = product $ zipWith (^)

                      (a027748_row n) (map a103889 $ a124010_row n)

-- Reinhard Zumkeller, Jun 23 2013

CROSSREFS

Cf. A011264.

Sequence in context: A048758 A277802 A159253 * A073843 A073842 A136271

Adjacent sequences:  A011259 A011260 A011261 * A011263 A011264 A011265

KEYWORD

nonn,easy,mult

AUTHOR

Marc LeBrun

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 01:42 EST 2017. Contains 294912 sequences.