login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A011260 Number of primitive polynomials of degree n over GF(2).
(Formerly M0107 N0132)
17
1, 1, 2, 2, 6, 6, 18, 16, 48, 60, 176, 144, 630, 756, 1800, 2048, 7710, 7776, 27594, 24000, 84672, 120032, 356960, 276480, 1296000, 1719900, 4202496, 4741632, 18407808, 17820000, 69273666, 67108864, 211016256, 336849900, 929275200, 725594112, 3697909056 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.

T. L. Booth, An analytical representation of signals in sequential networks, pp. 301-3240 of Proceedings of the Symposium on Mathematical Theory of Automata. New York, N.Y., 1962. Microwave Research Institute Symposia Series, Vol. XII; Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y. 1963 xix+640 pp. See p. 303.

R. Church, Tables of irreducible polynomials for the first four prime moduli, Annals Math., 36 (1935), 198-209.

P. Fan and M. Darnell, Sequence Design for Communications Applications, Wiley, NY, 1996, Table 5.1, p. 118.

W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. MIT Press, Cambridge, MA, 2nd edition, 1972, p. 476.

M. P. Ristenblatt, Pseudo-Random Binary Coded Waveforms, pp. 274-314 of R. S. Berkowitz, editor, Modern Radar, Wiley, NY, 1965; see p. 296.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

David W. Wilson, Table of n, a(n) for n=1..400

Joerg Arndt, Matters Computational (The Fxtbook)

Karthik Ganesan, Alexander Hu, Subhasish Mitra, H.-S. Philip Wong, Simon Wong, Tony F. Wu, TPAD: Hardware Trojan Prevention and Detection for Trusted Integrated Circuits, arXiv preprint, 2015.

P. Koopman, Complete lists up to N=32

F. Ruskey, Primitive and Irreducible Polynomials

Eric Weisstein's World of Mathematics, Primitive Polynomial.

MAPLE

with(numtheory): phi(2^n-1)/n;

MATHEMATICA

Table[EulerPhi[(2^n - 1)]/n, {n, 1, 50}]

PROG

(PARI) a(n)=eulerphi(2^n-1)/n - Hauke Worpel (thebigh(AT)outgun.com), Jun 10 2008

CROSSREFS

See A058947 for initial terms. Cf. A001037, A000020.

Cf. A027695.

Sequence in context: A140833 A257389 A071908 * A117855 A086442 A071407

Adjacent sequences:  A011257 A011258 A011259 * A011261 A011262 A011263

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 22:25 EDT 2017. Contains 289676 sequences.