|
|
A010997
|
|
a(n) = binomial coefficient C(n,44).
|
|
5
|
|
|
1, 45, 1035, 16215, 194580, 1906884, 15890700, 115775100, 752538150, 4431613550, 23930713170, 119653565850, 558383307300, 2448296039700, 10142940735900, 39895566894540, 149608375854525, 536830054536825, 1849081298960175, 6131164307078475, 19619725782651120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
44,2
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 44..1000
|
|
FORMULA
|
G.f.: x^44/(1-x)^45. - Zerinvary Lajos, Dec 20 2008
From Amiram Eldar, Dec 15 2020: (Start)
Sum_{n>=44} 1/a(n) = 44/43.
Sum_{n>=44} (-1)^n/a(n) = A001787(44)*log(2) - A242091(44)/43! = 387028092977152*log(2) - 7178888410874815560070307159852/26760193632961425 = 0.9786869603... (End)
|
|
MAPLE
|
seq(binomial(n, 44), n=44..67); # Zerinvary Lajos, Dec 20 2008
|
|
MATHEMATICA
|
Table[Binomial[n, 44], {n, 44, 70}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
|
|
PROG
|
(MAGMA) [Binomial(n, 44): n in [44..70]]; // Vincenzo Librandi, Jun 12 2013
|
|
CROSSREFS
|
Cf. A010995, A010996, A001787, A242091.
Sequence in context: A161690 A162183 A162418 * A163721 A292209 A317895
Adjacent sequences: A010994 A010995 A010996 * A010998 A010999 A011000
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|