login
A010984
Binomial coefficient C(n,31).
6
1, 32, 528, 5984, 52360, 376992, 2324784, 12620256, 61523748, 273438880, 1121099408, 4280561376, 15338678264, 51915526432, 166871334960, 511738760544, 1503232609098, 4244421484512, 11554258485616, 30405943383200, 77535155627160, 191991813933920
OFFSET
31,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (32, -496, 4960, -35960, 201376, -906192, 3365856, -10518300, 28048800, -64512240, 129024480, -225792840, 347373600, -471435600, 565722720, -601080390, 565722720, -471435600, 347373600, -225792840, 129024480, -64512240, 28048800, -10518300, 3365856, -906192, 201376, -35960, 4960, -496, 32, -1).
FORMULA
G.f.: x^31/(1-x)^32. - Zerinvary Lajos, Dec 19 2008; adapted to offset by Enxhell Luzhnica, Jan 21 2017
From Amiram Eldar, Dec 12 2020: (Start)
Sum_{n>=31} 1/a(n) = 31/30.
Sum_{n>=31} (-1)^(n+1)/a(n) = A001787(31)*log(2) - A242091(31)/30! = 33285996544*log(2) - 6717121856795533085173/291136195350 = 0.9704936372... (End)
MAPLE
seq(binomial(n, 31), n=31..53); # Zerinvary Lajos, Dec 19 2008
MATHEMATICA
Table[Binomial[n, 31], {n, 31, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
PROG
(Magma) [Binomial(n, 31): n in [31..70]]; // Vincenzo Librandi, Jun 12 2013
(PARI) x='x+O('x^50); Vec(x^31/(1-x)^32) \\ G. C. Greubel, Nov 23 2017
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved