login
A010982
Binomial coefficient C(n,29).
5
1, 30, 465, 4960, 40920, 278256, 1623160, 8347680, 38608020, 163011640, 635745396, 2311801440, 7898654920, 25518731280, 78378960360, 229911617056, 646626422970, 1749695026860, 4568648125690, 11541847896480, 28277527346376, 67327446062800, 156077261327400
OFFSET
29,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (30, -435, 4060, -27405, 142506, -593775, 2035800, -5852925, 14307150, -30045015, 54627300, -86493225, 119759850, -145422675, 155117520, -145422675, 119759850, -86493225, 54627300, -30045015, 14307150, -5852925, 2035800, -593775, 142506, -27405, 4060, -435, 30, -1).
FORMULA
G.f.: x^29/(1-x)^30. - Zerinvary Lajos, Dec 19 2008; adapted to offset by Enxhell Luzhnica, Jan 21 2017
From Amiram Eldar, Dec 12 2020: (Start)
Sum_{n>=29} 1/a(n) = 29/28.
Sum_{n>=29} (-1)^(n+1)/a(n) = A001787(29)*log(2) - A242091(29)/28! = 7784628224*log(2) - 108340675094713923269/20078358300 = 0.9686369528... (End)
MAPLE
seq(binomial(n, 29), n=29..53); # Zerinvary Lajos, Dec 19 2008
MATHEMATICA
Table[Binomial[n, 29], {n, 29, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
PROG
(Magma) [Binomial(n, 29): n in [29..60]]; // Vincenzo Librandi, Jun 12 2013
(PARI) x='x+O('x^50); Vec(x^29/(1-x)^30) \\ G. C. Greubel, Nov 23 2017
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved