login
Binomial coefficient C(n,26).
3

%I #40 Dec 15 2023 10:36:18

%S 1,27,378,3654,27405,169911,906192,4272048,18156204,70607460,

%T 254186856,854992152,2707475148,8122425444,23206929840,63432274896,

%U 166509721602,421171648758,1029530696964,2438362177020,5608233007146,12551759587422,27385657281648

%N Binomial coefficient C(n,26).

%H T. D. Noe, <a href="/A010979/b010979.txt">Table of n, a(n) for n = 26..1000</a>

%H <a href="/index/Rec#order_27">Index entries for linear recurrences with constant coefficients</a>, signature (27, -351, 2925, -17550, 80730, -296010, 888030, -2220075, 4686825, -8436285, 13037895, -17383860, 20058300, -20058300, 17383860, -13037895, 8436285, -4686825, 2220075, -888030, 296010, -80730, 17550, -2925, 351, -27, 1).

%F G.f.: x^26/(1-x)^27. - _Zerinvary Lajos_, Aug 18 2008; adapted to offset by _Enxhell Luzhnica_, Jan 21 2017

%F From _Amiram Eldar_, Dec 11 2020: (Start)

%F Sum_{n>=26} 1/a(n) = 26/25.

%F Sum_{n>=26} (-1)^n/a(n) = A001787(26)*log(2) - A242091(26)/25! = 872415232*log(2) - 155661889283343139/257414850 = 0.9653663105... (End)

%p seq(binomial(n,26),n=26..41); # _Zerinvary Lajos_, Aug 18 2008

%t Table[Binomial[n,26],{n,26,60}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 26 2011 *)

%o (Magma) [Binomial(n, 26): n in [26..60]]; // _Vincenzo Librandi_, Jun 12 2013

%o (PARI) x='x+O('x^50); Vec(x^26/(1-x)^27) \\ _G. C. Greubel_, Nov 23 2017

%Y Cf. A010970, A010971, A010972, A001787, A242091.

%K nonn,easy

%O 26,2

%A _N. J. A. Sloane_