%I #60 Dec 15 2023 10:25:08
%S 1,16,136,816,3876,15504,54264,170544,490314,1307504,3268760,7726160,
%T 17383860,37442160,77558760,155117520,300540195,565722720,1037158320,
%U 1855967520,3247943160,5567902560,9364199760,15471286560,25140840660,40225345056,63432274896
%N a(n) = binomial(n,15).
%C There are no primes in this sequence. - _Artur Jasinski_, Dec 02 2007
%H T. D. Noe, <a href="/A010968/b010968.txt">Table of n, a(n) for n = 15..1000</a>
%H Milan Janjic, <a href="https://pmf.unibl.org/janjic/">Two Enumerative Functions</a> University of Banja Luka (Bosnia and Herzegovina, 2017).
%H Ângela Mestre and José Agapito, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Mestre/mestre2.html">Square Matrices Generated by Sequences of Riordan Arrays</a>, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1).
%F a(n) = -A110555(n+1,15). - _Reinhard Zumkeller_, Jul 27 2005
%F a(n+14) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)(n+13)(n+14)/15!. - _Artur Jasinski_, Dec 02 2007; _R. J. Mathar_, Jul 07 2009
%F G.f.: x^15/(1-x)^16. - _Zerinvary Lajos_, Aug 06 2008; _R. J. Mathar_, Jul 07 2009
%F a(n) = n/(n-15) * a(n-1), n > 15. - _Vincenzo Librandi_, Mar 26 2011
%F From _Amiram Eldar_, Dec 10 2020: (Start)
%F Sum_{n>=15} 1/a(n) = 15/14.
%F Sum_{n>=15} (-1)^(n+1)/a(n) = A001787(15)*log(2) - A242091(15)/14! = 245760*log(2) - 1023103525/6006 = 0.9438350048... (End)
%p seq(binomial(n,15),n=15..37); # _Zerinvary Lajos_, Aug 06 2008
%t Table[Binomial[n,15],{n,15,50}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 22 2011 *)
%o (Magma) [ Binomial(n,15): n in [15..70]]; // _Vincenzo Librandi_, Mar 26 2011
%o (PARI) for(n=15, 50, print1(binomial(n,15), ", ")) \\ _G. C. Greubel_, Aug 31 2017
%Y Cf. A000581, A001787, A110555, A242091.
%K nonn
%O 15,2
%A _N. J. A. Sloane_
%E Some formulas adjusted to the offset by _R. J. Mathar_, Jul 07 2009