The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010916 Pisot sequence E(8,10), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ). 4
 8, 10, 13, 17, 22, 28, 36, 46, 59, 76, 98, 126, 162, 208, 267, 343, 441, 567, 729, 937, 1204, 1547, 1988, 2555, 3284, 4221, 5425, 6972, 8960, 11515, 14799, 19020, 24445, 31417, 40377, 51892, 66691, 85711, 110155, 141570, 181944, 233832, 300518, 386222, 496368, 637926 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Cantor, D. G. "Investigation of T-numbers and E-sequences." In Computers in Number Theory, ed. AOL Atkin and BJ Birch, Acad. Press, NY (1971); pp. 137-140. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305. D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. David Cantor, Investigation of T-numbers and E-sequences, In Computers in Number Theory, ed. A. O. L. Atkin and B. J. Birch, Acad. Press, NY (1971); pp. 137-140. [Annotated scanned copy] FORMULA It is not true that a(n) = a(n-1) + a(n-6), which holds just for n <= 37 (see A275627). E.g. a(38) = 110155 = 85711 + 24445 - 1 = a(37) + a(32) - 1. Sequence is believed to be non-recurring. PROG (PARI) pisotE(nmax, a1, a2) = {   a=vector(nmax); a[1]=a1; a[2]=a2;   for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));   a } pisotE(50, 8, 10) \\ Colin Barker, Jul 28 2016 CROSSREFS See A008776 for definitions of Pisot sequences. Cf. A275627. Sequence in context: A120166 A030732 A167487 * A275627 A101764 A309065 Adjacent sequences:  A010913 A010914 A010915 * A010917 A010918 A010919 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 17:02 EDT 2020. Contains 334630 sequences. (Running on oeis4.)