login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010907 Pisot sequence E(4,19), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ). 2
4, 19, 90, 426, 2016, 9541, 45154, 213697, 1011348, 4786332, 22651920, 107203069, 507352048, 2401107571, 11363544486, 53779407822, 254517831936, 1204537747753, 5700626846950, 26978935702753, 127681216679304, 604267465267128, 2859772009358880, 13534231802298265, 64052459384483260, 303136344428812723, 1434630991482656082, 6789572149788327282 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305

D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.

FORMULA

Theorem: a(n) = 4 a(n - 1) + 3 a(n - 2) + 2 a(n - 3) + a(n - 4).  (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016

G.f.: -(x^3+2*x^2+3*x+4)/(x^4+2*x^3+3*x^2+4*x-1). [Colin Barker, Nov 29 2012] (This follows from the above recurrence. - N. J. A. Sloane, Sep 09 2016)

MATHEMATICA

PSE[a_, b_, n_]:=Join[{x=a, y=b}, Table[z=Floor[y^2/x+1/2]; x=y; y=z, {n}]]; A010907=PSE[4, 19, 20] (* Zak Seidov, Mar 24 2011 *)

nxt[{a_, b_}]:={b, Floor[b^2/a+1/2]}; Transpose[NestList[nxt, {4, 19}, 20]] [[1]] (* Harvey P. Dale, Mar 13 2016 *)

CROSSREFS

Cf. A077922.

Sequence in context: A015530 A256959 A181880 * A229242 A087449 A004253

Adjacent sequences:  A010904 A010905 A010906 * A010908 A010909 A010910

KEYWORD

nonn

AUTHOR

Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 28 11:19 EDT 2016. Contains 276601 sequences.