This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010907 Pisot sequence E(4,19), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ). 2
 4, 19, 90, 426, 2016, 9541, 45154, 213697, 1011348, 4786332, 22651920, 107203069, 507352048, 2401107571, 11363544486, 53779407822, 254517831936, 1204537747753, 5700626846950, 26978935702753, 127681216679304, 604267465267128, 2859772009358880, 13534231802298265, 64052459384483260, 303136344428812723, 1434630991482656082, 6789572149788327282 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305 D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016) FORMULA Theorem: a(n) = 4 a(n - 1) + 3 a(n - 2) + 2 a(n - 3) + a(n - 4).  (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016 G.f.: -(x^3+2*x^2+3*x+4)/(x^4+2*x^3+3*x^2+4*x-1). [Colin Barker, Nov 29 2012] (This follows from the above recurrence. - N. J. A. Sloane, Sep 09 2016) MATHEMATICA PSE[a_, b_, n_]:=Join[{x=a, y=b}, Table[z=Floor[y^2/x+1/2]; x=y; y=z, {n}]]; A010907=PSE[4, 19, 20] (* Zak Seidov, Mar 24 2011 *) nxt[{a_, b_}]:={b, Floor[b^2/a+1/2]}; Transpose[NestList[nxt, {4, 19}, 20]] [[1]] (* Harvey P. Dale, Mar 13 2016 *) CROSSREFS Cf. A077922. Sequence in context: A015530 A256959 A181880 * A229242 A087449 A004253 Adjacent sequences:  A010904 A010905 A010906 * A010908 A010909 A010910 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.