login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010882 Period 3: repeat [1, 2, 3]. 19
1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Partial sums are given by A130481(n)+n+1. - Hieronymus Fischer, Jun 08 2007

41/333 = 0.123123123... - Eric Desbiaux, Nov 03 2008

Terms of the simple continued fraction for 3/(sqrt(37)-4). - Paolo P. Lava, Feb 16 2009

This is the lexicographically earliest sequence with no substring of more than 1 term being a palindrome. - Franklin T. Adams-Watters, Nov 24 2013

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (0,0,1).

Index entries for sequences that are fixed points of mappings

FORMULA

G.f.: (1+2x+3x^2)/(1-x^3). - Paul Barry, May 25 2003

a(n) = 1 + (n mod 3). - Paolo P. Lava, Nov 21 2006

a(n) = A010872(n) + 1. - Hieronymus Fischer, Jun 08 2007

a(n) = 6 - a(n-1) - a(n-2) for n > 1. - Reinhard Zumkeller, Apr 13 2008

a(n) = n+1-3*floor(n/3) = floor(41*10^(n+1)/333)-floor(41*10^n/333)*10; a(n)-a(n-3)=0 with n>2. - Bruno Berselli, Jun 28 2010

a(n) = A180593(n+1)/3. - Reinhard Zumkeller, Oct 25 2010

a(n) = floor((4*n+3)/3) mod 4. - Gary Detlefs, May 15 2011

a(n) = -cos(2/3*Pi*n)-1/3*3^(1/2)*sin(2/3*Pi*n)+2. - Leonid Bedratyuk, May 13 2012

E.g.f.: 2*(3*exp(3*x/2) - sqrt(3)*cos(Pi/6-sqrt(3)*x/2))*exp(-x/2)/3. - Ilya Gutkovskiy, Jul 05 2016

MAPLE

seq(op([1, 2, 3]), n=0..50); # Wesley Ivan Hurt, Jul 05 2016

MATHEMATICA

Nest[ Flatten[ # /. {1 -> {1, 2}, 2 -> {3, 1}, 3 -> {2, 3}}] &, {1}, 7] (* Robert G. Wilson v, Mar 08 2005 *)

PadRight[{}, 120, {1, 2, 3}] (* Harvey P. Dale, Apr 09 2018 *)

PROG

(Haskell)

a010882 = (+ 1) . (`mod` 3)

a010882_list = cycle [1, 2, 3]

-- Reinhard Zumkeller, Mar 20 2013

(PARI) a(n) = 1 + n%3; \\ Michel Marcus, Feb 04 2016

(MAGMA) &cat[[1..3]^^30]; // Vincenzo Librandi, Feb 04 2016

CROSSREFS

Cf. A010872, A010873, A010874, A010875, A010876, A004526, A002264, A002265, A002266, A177036 (decimal expansion of (4+sqrt(37))/7), A214090.

Cf. A130481, A180593.

Sequence in context: A082846 A117373 A132677 * A293207 A106590 A194074

Adjacent sequences:  A010879 A010880 A010881 * A010883 A010884 A010885

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 22:42 EDT 2018. Contains 315270 sequences. (Running on oeis4.)