login
Expansion of Product_{k>=1} (1-x^k)^31.
1

%I #21 Aug 13 2023 08:48:18

%S 1,-31,434,-3565,18445,-57505,70091,227447,-1241550,2102730,1139498,

%T -11000164,15185009,8060465,-39266925,11975548,33735905,79961555,

%U -212042635,-176681400,762467041,-231771190,-762218948,-59474275,687626655,2193123086,-3317871844

%N Expansion of Product_{k>=1} (1-x^k)^31.

%D Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

%H Seiichi Manyama, <a href="/A010836/b010836.txt">Table of n, a(n) for n = 0..10000</a>

%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.

%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>

%F a(0) = 1, a(n) = -(31/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Aug 13 2023

%Y Column k=31 of A286354.

%Y Cf. A000203.

%K sign

%O 0,2

%A _N. J. A. Sloane_