login
Expansion of Product_{k>=1} (1-x^k)^29.
1

%I #21 Aug 13 2023 08:47:24

%S 1,-29,377,-2842,13195,-34684,19285,206973,-745706,782275,1621564,

%T -5803161,4026360,8149841,-12056025,-7428263,254504,69194580,

%U -49156653,-167517050,224634319,94868280,-112333182,-288914501,-172722550,1061590530,-420678727,-212254364

%N Expansion of Product_{k>=1} (1-x^k)^29.

%D Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

%H Seiichi Manyama, <a href="/A010834/b010834.txt">Table of n, a(n) for n = 0..10000</a>

%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.

%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>

%F a(0) = 1, a(n) = -(29/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Aug 13 2023

%Y Column k=29 of A286354.

%Y Cf. A000203.

%K sign

%O 0,2

%A _N. J. A. Sloane_