%I #23 Aug 13 2023 08:47:15
%S 1,-27,324,-2223,9126,-19278,-5967,159030,-399087,151593,1270971,
%T -2500875,74970,4203522,-1004157,-4796037,-11750778,32885190,10452375,
%U -77533092,27104868,43070625,63798840,-69960267,-215939061,236414349,-37046646,237487433,85921371
%N Expansion of Product_{k>=1} (1-x^k)^27.
%D Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
%H Seiichi Manyama, <a href="/A010832/b010832.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.
%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%F a(0) = 1, a(n) = -(27/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Aug 13 2023
%Y Column k=27 of A286354.
%Y Cf. A000203.
%K sign
%O 0,2
%A _N. J. A. Sloane_