%I #31 Aug 13 2023 08:47:11
%S 1,-26,299,-1950,7475,-13754,-12220,132756,-276575,0,1010100,-1486030,
%T -519961,2486300,829725,-2215486,-11643060,18523050,16317925,
%U -42861650,0,11010090,59644221,-5743400,-138219900
%N Expansion of Product_{k>=1} (1-x^k)^26.
%D Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
%H Seiichi Manyama, <a href="/A010831/b010831.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.
%H S. R. Finch, <a href="https://arxiv.org/abs/math/0701251">Powers of Euler's q-Series</a>, arXiv:math/0701251 [math.NT], 2007.
%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%F a(0) = 1, a(n) = -(26/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Aug 13 2023
%e 1 - 26*x + 299*x^2 - 1950*x^3 + 7475*x^4 - 13754*x^5 - 12220*x^6 + 132756*x^7 + ...
%t CoefficientList[Expand@ Product[(1 - x^k)^26, {k, 25}], x, 25] (* _Michael De Vlieger_, Jun 08 2016 *)
%Y Column k=26 of A286354.
%Y Cf. A000203, A126581, A322433.
%K sign
%O 0,2
%A _N. J. A. Sloane_