%I #23 Aug 13 2023 08:47:49
%S 1,-25,275,-1700,6050,-9405,-15550,107525,-182875,-81675,756655,
%T -801550,-662975,1220175,1361350,-209440,-9601900,8608900,14889050,
%U -19948500,-6262465,-7057550,38788925,19716425,-69119875,23579969,-82427400,98068850,191984400
%N Expansion of Product_{k>=1} (1-x^k)^25.
%D Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
%H Seiichi Manyama, <a href="/A010830/b010830.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.
%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%F a(0) = 1, a(n) = -(25/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Aug 13 2023
%Y Column k=25 of A286354.
%Y Cf. A000203.
%K sign
%O 0,2
%A _N. J. A. Sloane_