%I #20 Feb 05 2018 16:36:31
%S 1,-23,230,-1265,3795,-3519,-16445,64285,-64515,-120175,354706,
%T -123763,-407560,-48530,817190,1464341,-4376693,-135355,6303955,
%U -1282710,-682088,-11372603,5678585,13479425,-5451115,16579596
%N Expansion of Product_{k>=1} (1 - x^k)^23.
%D Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
%H Seiichi Manyama, <a href="/A010829/b010829.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.
%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%F a(0) = 1, a(n) = -(23/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017
%F G.f.: exp(-23*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018
%K sign
%O 0,2
%A _N. J. A. Sloane_.